Systems & Synthetic Biology

Faculty working in systems & synthetic biology:

faculty photo J. Christopher Anderson

Associate Professor, Bioengineering

Anderson Lab develops new applications and tools for the Synthetic Biology community. Our goal is to create a computationally-driven platform for the design of genetic organisms that minimizes the uncertainties and errors of such projects. Our platform is built around a computational method for encapsulating the function of biomolecules based on precise chemical models. Our platform aggregates data from various sources, then develops synthesis and verification tools to automatically design engineered organisms with new functions, demonstrated with bacterium that produces acetaminophen.

faculty photo Adam Arkin

Dean A. Richard Newton Memorial Professor, Bioengineering
Senior Faculty Scientist, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory
Director, Berkeley Synthetic Biology Institute
CEO/CSO, DOE Systems Biology Knowledgebase
PI and Co-Director, ENIGMA SFA

The Arkin Lab’s research focuses on the systems and synthetic biology of microorganisms. They are experts in theory, computation and experiments surrounding the modeling of biological systems at the molecular and population level and have developed a number of genome scale technologies with which we can rapidly assess the genomic function of uncharacterized microorganisms. The lab’s models span the deterministic and stochastic analysis of both homogeneous and spatially distributed systems.

faculty photo John Dueber

Associate Professor, Bioengineering

The Dueber Lab develops strategies for introducing designable, modular control over living cells. We are particularly interested in generating technologies for improving engineered metabolic pathway efficiency and directing flux. Our projects have applications in the development of biofuels, specialty chemicals, and environmentally friendly processes.

faculty photo Teresa Head-Gordon

Chancellor’s Professor, Department of Bioengineering,
Department of Chemistry,
Department of Chemical and Biomolecular Engineering

My research program encompasses the development of general computational and experimental methodologies applied to biochemistry and biology in the areas of water and aqueous hydration, protein folding, structure prediction, protein complexes, membrane proteins, and non-disease and disease protein aggregation. I have also been involved in local and national service, education, and training, which extends to promoting and developing the blueprint for computational biology and biophysical research for the future.

faculty photo Jay Keasling

Professor, Bioengineering
Hubbard Howe Jr. Distinguished Professor, Chemical Engineering
Director, Physical Biosciences Division, LBL and Synthetic Biology Engineering Research Center

Metabolic engineering, environmental biotechnology, and biochemical engineering.

faculty photo Sanjay Kumar

Professor and Associate Chair, Bioengineering
Professor of Chemical and Biomolecular Engineering
Faculty Scientist, Biological Systems and Engineering, LBNL

Our lab seeks to understand and engineer mechanical and other biophysical communication between cells and materials. In addition to investigating fundamental aspects of this problem with a variety of micro/nanoscale technologies, we are especially interested in discovering how this signaling regulates tumor and stem cell biology in the central nervous system. Recent directions have included: (1) Engineering new tissue-mimetic culture platforms for biophysical studies, molecular analysis, and screening; (2) Exploring mechanobiological signaling systems as targets for limiting the invasion of brain tumors and enhancing stem cell neurogenesis; and (3) Creating new biomaterials inspired by cellular structural networks.

faculty photo Mohammad Mofrad

Professor, Bioengineering
Professor, Mechanical Engineering
Faculty Scientist, Lawrence Berkeley National Lab

Our research program is focused on understanding cell mechanobiology and molecular mechanisms involved in human disease, in particular cardiovascular dysfunctions, brain and neurological disorders, and cancer.

faculty photo David Schaffer

Professor, Chemical and Biomolecular Engineering, Bioengineering
Professor, Helen Wills Neuroscience Institute
Director, Berkeley Stem Cell Center

Stem cell engineering, Gene delivery and therapy, Gene network biology

faculty photo Aaron Streets

Assistant Professor, Bioengineering

The Streets lab is interested in applying lessons from mathematics, physics, and engineering, to invent tools that help us dissect and quantify complex biological systems. Our goal is to uncover laws that govern the interactions of molecules inside the cell and the interactions between cells in a tissue or organism, by making precision measurements on single cells. In pursuit of this goal, we exploit three core technologies; microfluidics, microscopy, and genomics.