Team Members: Supada Sritanyaratana, Kenneth Gao, Albert Lin, Homayun Mehrabani
Capstone Client: Hobart Harris, MD, MPH, Professor and Chief, Division of General Surgery at UCSF
Purpose:
Microbial growth and infection of central venous catheters can lead to catheter-related bloodstream infections (CRBSIs) causing 28,000 deaths and a medical cost of $2.3 billion in the U.S.A. annually. Bacterial biofilms formed on the surfaces of catheters act as reservoirs for pathogens by resisting traditional antimicrobial methods. Protection of catheters from bacterial biofilms can reduce the occurrence of CRBSIs. Our team decided to pursue an electrified catheter concept to inhibit biofilm formation due to the presence of electric fields in the catheter. In our design, electrically isolated conductive bands inside the catheter’s wall create electric fields from band-to-band, inhibiting biofilm formation near the catheter walls.