Biomaterials include living tissue and artificial materials used for the repair, replacement, and stimulation of biological systems. Nanotechnology involves the development and use of technologies that operate on the nanometer length scale, around the size of a large biomolecule. Exciting efforts are underway to combine these two areas to assemble materials from nanoscale building blocks.
Our faculty are working at the interface of these two fields, with applications ranging from stem cell culture platforms to bio-inspired coatings to surgical adhesives.
Faculty working in biomaterials & nanotechnology:
Iain ClarkAssistant Professor, Bioengineering
http://clarklab.berkeley.edu/The Clark Lab develops microfluidic and molecular methods for the high throughput analysis of single cells. We use these techniques to study HIV latency in CD4 T cells and profile cellular interactions during central nervous system inflammation.
Irina Conboy
Professor, Bioengineering
https://conboylab.berkeley.edu/Our work has been focused on establishing new paradigms in multi-tissue stem cell aging, rejuvenation and regulation by conserved morphogenic signaling pathways. One of our goals is to define pharmacology for enhancing maintenance and repair of adult tissues in vivo. The spearheaded by us heterochronic parabiosis and blood apheresis studies have established that the process of aging is reversible through modulation of circulatory milieu. Our synthetic biology method of choice focuses on bio-orthogonal non-canonical amino acid tagging (BONCAT) and subsequent identification of age-imposed and disease-causal changes in mammalian proteomes in vivo. Our drug delivery reg medicine projects focus on CRISPR/Cas9 based therapeutics for more effective and safer gene editing.
Steve Conolly
Montford G. Cook Professor, Bioengineering
Professor, Electrical Engineering & Computer Sciences
The Conolly Lab has built the world’s highest spatial resolution MPI scanner and the only projection MPI scanner in the world. In addition, the lab has built the only 3D Projection-Reconstruction MPI scanner currently in existence.
Derfogail Delcassian
Assistant Professor, Bioengineering
The development of immunoengineering technologies to direct immune cell function. We build artificial lymph nodes, mRNA vaccines and 3D printed interfaces to study and control immune cell behaviour. These technologies have applications in cancer therapy, inducing transplant tolerance, spaceflight and auto-immune diseases.
Teresa Head-Gordon
Chancellor’s Professor, Department of Chemistry;
Professor, Departments of Bioengineering, Chemical & Biomolecular Engineering
The simultaneous revolutions in energy, molecular biology, nanotechnology and advanced scientific computing, is giving rise to new interdisciplinary research opportunities in computational science. The Head-Gordon lab embraces this large scope of science drivers through development of computational models and methodologies applied to molecular liquids, macromolecular assemblies, protein biophysics, and homogeneous, heterogeneous catalysis and biocatalysis. The development and application of complex chemistry models, accelerated sampling methods, coarse graining/multiscale techniques, and machine learning developed in her lab are widely disseminated through many community software codes that scale on high performance computing platforms.
Kevin Healy
Jan Fandrianto Professor, Bioengineering
Professor, Materials Science & Engineering
Research in the Healy Lab emphasizes the relationship between materials and the cells or tissues they contact. The research program focuses on the design and synthesis of bioinspired materials that actively direct the fate of mammalian cells, and facilitate regeneration of damaged tissues and organs. Major discoveries from his laboratory have centered on the control of cell fate and tissue formation in contract with materials that are tunable in both their biological content and mechanical properties. Professor Healy also has extensive experience with human stem cell technologies, microphysiological systems, drug delivery systems, and novel bioconjugate therapeutics.
Christopher Hernandez
Professor in Residence,
Professor of Orthopaedic Surgery and Bioengineering & Therapeutic Sciences, UCSF
Director, Health Innovations Via Engineering (HIVE), UCSF
Dr. Hernandez’s research in biomechanics examines the musculoskeletal system, microscopic organisms and interactions between microbes and materials. Current projects include understanding how the microbiome influences bone and infection of total joint replacements, how bacteria are influenced by mechanical stress and strain, and engineered living materials.
Syed Hossainy
Adjunct Professor, Bioengineering
Sanjay Kumar
Chancellor’s Professor, Bioengineering & Chemical and Biomolecular Engineering
Director, California Institute for Quantitative Biosciences (QB3) at UC Berkeley
Professor in Residence, Bioengineering and Therapeutic Sciences, UCSF
Faculty Scientist, Biological Systems and Engineering, LBNL
Our lab seeks to understand and engineer mechanical and other biophysical communication between cells and materials. In addition to investigating fundamental aspects of this problem with a variety of micro/nanoscale technologies, we are especially interested in discovering how this signaling regulates tumor and stem cell biology in the central nervous system. Recent directions have included: (1) Engineering new tissue-mimetic culture platforms for biophysical studies, molecular analysis, and screening; (2) Exploring mechanobiological signaling systems as targets for limiting the invasion of brain tumors and enhancing stem cell neurogenesis; and (3) Creating new biomaterials inspired by cellular structural networks.
Luke Lee
Professor Emeritus
Bioengineering and Electrical Engineering & Computer Sciences
Dr. Lee’s research interests are biophotonics, quantum nanoplasmonics, in-vivo nanoscopy, single cell biophysics, quantitative systems biology, SERS, molecular diagnostics, BioMEMS, soft-state Biological Application Specific Integrated Circuits (BASICs), neural interfaces, and systematic neurological science and engineering by Biologically-inspired Photonics & Optofluidic Electronics Technology and Science (BioPOETS).
Seung-Wuk Lee
Professor, Bioengineering
Faculty Scientist, Lawrence Berkeley National Laboratory
We are interested in bio-inspired nanomaterials and nanotechnology. We are developing new ways to fabricate high performance materials and devices through self-assembly processes by exploiting biological organisms such as viruses and cells. We are also designing synthetic viruses which can be exploited as regenerative tissue engineering materials and drug delivery vehicles.
Dorian Liepmann
Professor, Bioengineering
Professor, Mechanical Engineering
BioMEMS, microfluid dynamics, experimental biofluid dynamics, hemodynamics associated with valvular heart disease and other cardiac and arterial flows.
Gerard Marriott
Professor, Bioengineering
https://www.marriottlab.com/The Marriott lab is recognized for its innovative research programs at the interface of bioengineering, chemistry, and biophysics. Our technology-driven research programs are advanced through long-standing interests in the design, synthesis, and engineering of biosensors and biomaterials, and their applications to biosensing, microscope imaging, drug delivery, and wearable diagnostics.
Phillip Messersmith
Chair of Bioengineering, Class of 1941 WWII Memorial Chair in Bioengineering and Materials Science and Engineering
https://bioinspiredmaterials.berkeley.edu/My laboratory is interested in understanding structure-property relationships in biological materials and in using this information to design biologically inspired materials for use in healthcare. Fundamental studies include single molecule and bulk biophysical studies of biointerfacial and bulk mechanochemical phenomena in biological materials, whereas our applied studies the design and synthesis of novel biomaterials for tissue repair and regeneration.
Mohammad Reza Kaazempur Mofrad
Professor, Bioengineering
Professor, Mechanical Engineering
Faculty Scientist, Lawrence Berkeley National Lab
Molecular and Multiscale Biomechanics; Bioinformatics and Computational Biology; Statistical Machine Learning; Computational Precision Health; Microbiome; Personalized Medicine
Niren Murthy
Professor, Bioengineering
https://murthylab.berkeley.edu/Our laboratory is focused on developing new materials for drug delivery and molecular imaging.
Boris Rubinsky
Professor Emeritus, Bioengineering
Professor of the Graduate School, Mechanical Engineering
Bioelectronic devices, biotransport, medical imaging, electrical impedance tomography.
David Schaffer
Professor, Chemical & Biomolecular Engineering, Bioengineering, and Molecular & Cell Biology
Executive Director, QB3
Director, Bakar Labs and the Bakar BioEnginuity Hub
Director, Berkeley Stem Cell Center
Our research program melds basic biology and applied engineering principles to investigate preclinical and clinical gene and stem cell therapies, i.e. gene replacement and cell replacement approaches to treat human disease.